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ABSTRACT

A product of two lcsc non-compact groups G1 × G2 acting freely by

measure preserving transformation on a standard Borel probability space

gives rise to a non-treeable equivalence relation unless both groups are

amenable.

The result of the present paper can be placed as one of a series.

Theorem 0.1 (Adams, [1]): Let E1, E2 be countably infinite measure pre-

serving equivalence relations on standard Borel probability spaces X1, X2 with

E1 × E2 non-amenable. Then E1 × E2 is non-treeable.

Theorem 0.2 (Gaboriau, [11]): Let G1, G2 be countably infinite groups with

G1 × G2 non-amenable. Then any free measure preserving action of G1 × G2

on a standard Borel probability space is non-treeable.

Theorem 0.3 (Kechris, [18]): Let G1, G2 be locally compact non-compact sec-

ond countable groups one of which contains a non-compact closed amenable

subgroup and with G1 ×G2 non-amenable. Then any free measure preserving

action of G1 ×G2 on a standard Borel probability space is non-treeable.

Theorem 0.4 (Pemantle, Peres, [26]): Let X and Y be infinite, locally fi-

nite graphs. Suppose that G ⊂ Aut(X) is a closed nonamenable subgroup of
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Aut(X), and H ⊂ Aut(Y ) has an infinite orbit. Then there is no G × H-

invariant probability measure on the set of spanning trees of the direct product

graph G×H .

While here we show:

Theorem 0.5: Let G1, G2 be locally compact second countable groups with

G1×G2 acting in a measure preserving, measurable manner on a standard Borel

probability space with the orbit equivalence relation EG1
non-amenable and G2

not acting essentially transitively on any of its ergodic components. Then the

orbit equivalence relation induced by the product group action, EG1×G2
, is not

treeable.

Corollary 0.6: Let G1, G2 be locally compact non-compact second countable

groups with G1 ×G2 acting in a free, measure preserving, measurable manner

on a standard Borel probability space. Then if G1 ×G2 is non-amenable then

EG1×G2
is not treeable.

Our proof is a refinement of Kechris’, which, in turn, had points in common

with Adams’, and as thus traces back to ideas from Zimmer, [31], and from

there to earlier work of Margulis and Mostow. The original proof of Gaboriau’s

result, however, used a radically different idea to these three results, and the

proof of Pemantle and Peres was different again. It is clear that 0.5 implies 0.3

and 0.2; in the last section we use some observations from [20] to show that

0.4 follows as well, but this is less of an achievement since their proof is by far

the simplest and most elegant of the sequence. Again as pointed out by [20],

0.4 can be used to derive 0.2, though it should also be said that 0.2 arises as

one small piece of a much broader body of work on the concept of cost. 0.5

also implies 0.1, since any countable measure preserving equivalence relation is

induced by the measure preserving action of a countable group ([9]).

acknowledgments. I am grateful to Nicholas Monod for a number of helpful
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ing it might have some applications to the theory of Borel reducibility. I am
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from [20]. I am grateful to Scot Adams for a number of discussions about these

techniques in general, as well as some specific comments about this paper. And

finally I am grateful to the referee for an unusually insightful reading; indeed the
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1. Borel reducibility

In this paper we consider only actions by groups which are locally compact,

second countable, and Hausdorff – lcsc groups for short. Any such group is

completely metrizable (see, for example, [24, Chapter 3, exercise 3]). Thus, in

particular, it is Polish, and there is a robust structure theorem for its Borel sets

and Borel actions (see for instance [5], [16]).

We will find it convenient to organize the later arguments around the notion

of Borel reducibility.

Definition: Let E,F be Borel equivalence relations on standard Borel spaces

X,Y . We say that E is Borel reducible to F , written E ≤B F , if there is a

Borel function

θ : X → Y,

such that for all x1, x2 ∈ X

x1Ex2 ⇔ θ(x1)Fθ(x2).

We say that E is smooth if it is Borel reducible to id(R), the identity relation

on R.

Definition: An equivalence relation E on standard Borel X is treeable if there

is a Borel subset G ⊂ X ×X such that:

(i) G is symmetric;

(ii) G is irreflexive, in the sense that (x, x) is never in G;

(iii) G is acyclic (in other words, if x1, x2, . . . , xn ∈ G with each (xi, xi+1) ∈ G

and xi 6= xj for i 6= j, then (xn, x1) /∈ G);

(iv) the connected components of G form the equivalence classes of E.

An equivalence relation is countable if every equivalence relation is countable.

It has been customary to only consider treeability in the context of countable

Borel equivalence relations, but it makes sense to consider treeable equivalence

relations with uncountable classes and certain key aspects of the existing theory

simply adapts.
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Lemma 1.1 (essentially [14]): Let E on X be a treeable Borel equivalence rela-

tion and let A ⊂ X be Borel set meeting each orbit in at most a countable set.

Then E|A, the restriction of E to A, is again treeable.

Proof. Let B be the set of points which are either in A or lie between two

distinct points in A. By Novikov–Lusin (see [16]), this set is Borel, and it is

clear that E|B is treeable. Now [14] shows that the restriction of a countable

treeable equivalence relation to a Borel subset is again treeable.

Corollary 1.2: Let G be lcsc group acting in a Borel manner on a standard

Borel space X . Then EX
G is treeable if and only if EX

G is Borel reducible to an

orbit equivalence relation induced by a free, Borel action of F2, the free group

on two generators.

Proof. Following [17], we can fix Borel set A ⊂ X meeting each orbit in a

countable non-empty set. By the uniformization theorem for Borel sets in the

plane with countable sections1 we can in a Borel manner select to each x ∈ X

some x′ = φ(x) ∈ [x]G ∩A, and hence obtain EX
G ≤B EX

G |A.

(⇒:) It suffices to show that EX
G |A is Borel reducible to a suitable action of

F2. But by the last lemma EX
G |A is again treeable, and then since it is countable

we have that it is Borel reducible to a free, Borel action of F2 by [14].

(⇐:) Assume θ : X → Y gives a reduction of EX
G to EY

F2
, where Y is a free,

Borel F2 space. Then in particular θ|A reduces EX
G |A to a treeable equivalence

relation, and hence, again by [14], EX
G |A admits some treeing, GA. We then

define a treeing by xGx′ if and only if either:

(i) x, x′ ∈ A, xGAx
′; or

(ii) x ∈ A, x′ /∈ A, φ(x′) = x; or

(iii) x ∈ A, x′ /∈ A, φ(x) = x′.

The treeable relations are most naturally contrasted with the hyperfinite.

Definition: An equivalence relation E is hyperfinite if there is an increasing

union of Borel equivalence relations, (Fn), with finite classes, such that

E =
⋃
n∈N

Fn.

1 Again, [16] is an ideal place to find an account of classical facts such as this one.
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Hyperfinite equivalence relations can be alternately characterized as the equi-

valence relations induced by a Borel action of Z or the Borel equivalence rela-

tions for which every infinite equivalence class can be assigned, in a uniformly

Borel fashion, the structure of a Z-chain.2 This last characterization makes it

clear that hyperfiniteness is a special kind of treeability.

However, whereas most of the structural properties of hyperfinitess are un-

derstood, at least up to discounting null sets, the structural properties of the

treeable equivalence relations have not been adequately documented.

Question: Is a countable Borel equivalence relation with finite index over tree-

able again treeable?

See here [14] for a discussion of this problem and terminology. In that paper

they show that finite index over hyperfinite is again hyperfinite.

Question: Which lcsc groups have all their free Borel, measure preserving

actions on standard Borel probability spaces treeable?

In the case of hyperfinite this is largely understood: If every such action of lcsc

G is Borel reducible to a hyperfinite equivalence relation, then G is amenable

(see e.g. [31]), and conversely if G is amenable then after possibly discounting

a null set any such action will be Borel reducible to a hyperfinite equivalence

relation (see [31], [25]). (It remains notoriously open, however, even for discrete

groups, whether any such action will be hyperfinite everywhere, and not just

almost everywhere.)

On the other hand, there is at least one structural property known true

for hyperfinite and known false for treeable: Increasing unions of hyperfinite

equivalence relations are hyperfinite almost everywhere by [7]; an increasing

union of countable treeable equivalence relations need not be treeable on any

conull set (see [14] or [11]).

An especially important example of a hyperfinite equivalence relation is given

by E0.

Notation: We let E0 be the equivalence relation of eventual agreement on infi-

nite binary sequences. So for ~x, ~y ∈ {0, 1}N(=df 2N) we let

~xE0~y

2 See [22] for an extended analysis of some of the subtle distinctions which are possible

here.
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if ∃N ∀m > N(xm = ym).

E0 is clearly hyperfinite; conversely [8] shows that every hyperfinite equiva-

lence relation is Borel reducible to E0.

Notation: We let E1 be the equivalence relation of eventual agreement on infi-

nite sequences of reals: For ~x, ~y ∈ R
N we let

~xE1~y

if ∃N ∀m > N(xm = ym).

E1 is an example of a treeable equivalence relation which is not Borel reducible

to any countable Borel equivalence relation. In fact by [19], not Borel reducible

to any Borel action of a Polish group.

Notation: We let E∞T arise from the orbit equivalence relation of F2 on F (2F2),

the part of 2F2(=df {0, 1}F2) on which every non-trivial element of F2 has no

fixed points under the shift action.

For our purposes the exact definition of E∞T is unimportant. We only need

the fact established in [14] that it is induced by a free action of F2 and that

any countable, Borel, treeable equivalence relation is Borel reducible to E∞T .

With this notation granted, I can finish this brief survey with one last, and, for

the author, most central question:

Question: Up to ≤B-reducibility, how many Borel equivalence relations E are

there with

E0 <B E < E∞T ?

2. Mixing properties

Definition: A locally compact group G equipped with a Haar measure ν is said

to act measurably on a standard Borel probability space (X,µ) if for any Borel

A ⊂ X the set {(g, x) : g · x ∈ A} is measurable in (G×X, ν × µ). Let G be a

lcsc group acting in a properly ergodic, measurable, non-singular manner on a

standard Borel probability space (X,µ). The action of G on (X,µ) is mildly

mixing if whenever G acts in a properly ergodic, measurable, non-singular,

manner on a standard Borel probability space (X ′, µ′), the diagonal action of

G on (X ×X ′, µ× µ′) is again ergodic. ([28])
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For M a class of separable Banach spaces, the action of G on (X,µ) is M-

ergodic if whenever E ∈ M and we have a continuous homomorphism

π : G→ Iso(E),

g 7→ πg,

from G to the isometry group of E, and we have a measurable

ϕ : X → E

which is equivariant in the sense that

ϕ(g · x) = πg(ϕ(x))

all x ∈ X, g ∈ G, then ϕ is constant almost everywhere.

A couple of remarks about these definitions.

There is essentially only one standard Borel structure on a separable Banach

space, and that is the Borel structure arising from the Polish topology induced

by the Banach norm. This is the sense in which we require ϕ : X → E to be

measurable.

Since the isometry group of separable Banach space is Polish, it follows from

Pettis’ lemma, [27], that any measurable homomorphism G → Isom(E) is nec-

essarily continuous.

Future discussions of M-ergodicity will probably be clarified by noting that

a standard argument shows that an almost every equivariant map from X to E

can be replaced by an everywhere equivariant map.

Lemma 2.1: Let G be a locally compact group equipped with right invariant

Haar measure acting in a non-singular measurable manner on standard Borel

probability space (X,µ). Let π : G→ Isom(E) be a continuous homomorphism

and ϕ̂ : X → E a measurable map with almost every x ∈ X , g ∈ G

ϕ̂(g · x) = πg(ϕ̂(x)).

Then we can find conull, invariant X0 ⊂ X and ϕ : X0 → E agreeing almost

every with ϕ̂ and such that for all x ∈ X0, g ∈ G

ϕ(g · x) = πg(ϕ(x)).

Proof. Let A ⊂ G ×X be the set of (g, x) with ϕ̂(g · x) = πg(ϕ̂(x)). We have

assumed that A is conull, and then in particular we have that for any h ∈ G
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the set of (g, x) with (g, h · x) ∈ A is again conull. Then by Fubini the set

X0 = {x ∈ X : a.e. g, h ∈ G((g, h · x) ∈ A)}

is again conull; by right invariance X0 is G-invariant.

Given any x ∈ X0 we choose some h ∈ G such that for almost every g ∈ G

we have (g, h · x) ∈ A and let ϕ(x) = π−1
h (ϕ̂(h · x)); this definition does not

depend on the choice of h, since given a competing choice h′ we may find g1, g2

such that g1h = g2h
′ and (g1, h · x), (g2, h

′ · x) ∈ A, and note that

π−1
h (ϕ̂(h · x)) = π−1

h π−1
g1

(ϕ̂(g1h · x)) = π−1
h′ π

−1
g2

(ϕ̂(g2h
′ · x)) = π−1

h′ (ϕ̂(h′ · x)).

A similar calculation gives that ϕ is equivariant on all of X0.

A parallel and well-known argument gives that a measurable action of a lcsc

group G on a standard Borel probability space (X,µ) agrees almost everywhere

with a Borel action of G on X (see [31]). We will generally assume only that our

actions are measurable, but in light of this well known argument it is reasonable

to blur the distinction between Borel actions and merely measurable actions.

Lemma 2.2: Mild mixing implies M-ergodicity for M the class of all separable

Banach spaces.

Proof. Given π : G → Isom(E) and equivariant f : X → E, we obtain a

G-invariant function
X ×X → R

(x, y) 7→ ||f(x) − f(y)||.

If the action of G on X ×X is ergodic, which is the case assuming the original

action was mild mixing, then this function must be constant almost everywhere,

which would imply it is zero almost everywhere.

The converse to this lemma fails. There is an action of F2 which is M-ergodic

for M the class of all separable Banach spaces but is not mildly mixing. This

counterexample uses extraneous ideas, and so we put it off until the end of §3.

Nevertheless, M-ergodicity does imply the analog of mild mixing if we re-

strict to taking products with measure preserving actions. Here we provide a

definition.

Definition: A properly ergodic, measurable, non-singular action of a lcsc group

G on (X,µ) is moderately mixing if whenever G acts in a properly ergodic,
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measurable, measure preserving manner on a standard Borel probability space

(X ′, µ′) the diagonal action of G on (X ×X ′, µ× µ′) is again ergodic.

Lemma 2.3: Let G be a lcsc group acting in a measurable, non-singular, ergodic

manner on a standard Borel probability space (X,µ). The action of G on (X,µ)

is moderately mixing if and only if it is {ℓ2}-ergodic.

Proof. (⇐) : Suppose G acts by measure preserving transformations on a stan-

dard Borel probability space (Y, ν). For a contradiction assume A ⊂ X × Y

is measurable, invariant, and neither null nor conull. At each x ∈ X we let

Ax = {y ∈ Y : (x, y) ∈ A}. Define

π : X → L2(Y )

x 7→ χAx
,

the function which assigns to each x the characteristic function of the slice Ax.

This is almost everywhere G-equivariant, and so the assumptions on X imply

it is constant almost everywhere as an element in L2(Y ). Thus we have some

A ⊂ Y such that Ax = A for almost every x, and in particular for every g ∈ G

the measure of A∆g · A is zero. Replacing A by {y ∈ Y : for almost every g ∈

G(g · y ∈ A)}, gives a truly invariant subset of Y , with a contradiction to

ergodicity.

(⇒): Assume

π : G→ LinIsom(ℓ2)

g 7→ πg

is a continuous homomorphism and we have π-equivariant measurable φ : X →

ℓ2 with φ(g · x) = πg · φ(x) for almost every x, g. We assume π is not constant

and try to construct a counterexample to moderate mixing.

Claim: There is an irreducible unitary representation

ρ : G→ LinIsom(H)

g 7→ ρg

and non-trivial measurable ψ : X → H with ψ(g ·x) = ρg ·φ(x) for almost every

x, g.
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Proof of Claim. Following say [21] we find a standard measure space (Z,m) and

write ℓ2 as a direct integral of irreducible representations of G:

ℓ2 =

∫
Z

Hzdz

φ =

∫
Z

φzdz.

Then for each z ∈ Z we have a map

pz : ℓ2 → Hz

which coordinate so that for any v ∈ ℓ2 we have

v =

∫
Z

pz(v)dz

and for any g ∈ G

g · v =

∫
Z

φz
g · pz(v)dz.

Thus for almost every g, x we have at m-a.e. z

pz(φg · π(x)) = φz
g · pz(π(x));

we may assume that pz ◦ π is non-trivial at every z. Thus we may appeal

to Fubini to find a single z such that for almost every g, x pz(φg · π(x)) =

φz
g · pz(π(x)) and finish with H = Hz, ρ = φz, ψ = pz(π).

Now there is a split in cases:

Case 1: The representation is finite dimensional.

Clearly there is a U(H)-invariant invariant probability measure ν′ on the unit

ball in H. For each x ∈ X we let (Yx, νx) be the ergodic component of ψ(x)

in ((H)1, ν
′) under the action of G. By ergodicity of the G action on X , we

obtain that this ergodic component is constant µ-a.e; let (Y, µ) be this ergodic

component.

Now we obtain a non-trivial G-invariant function

f : X × Y → R

(x, v) 7→ ||ψ(x) − v||.

Case 2: The representation is infinite dimensional.
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Following [31, 5.2.13] we may find a standard Borel probability space (Y, ν)

on which G acts measurably, measure preservingly, and ergodically, and for

which the representation ρ is isomorphic to a direct summand of the usual

representation of G on L2(Y, ν); at that point we may assume H is a direct

summand of L2(Y, ν), and hence every f ∈ H is a function in L2(Y, ν).

We obtain a non-trivial function with

f : X × Y → C

(x, y) 7→ (ψ(x))(y).

Unwinding the definitions we see that almost everywhere

f(g · x, g · y) = (ψ(g · x))(g · y) = g · (ψ(x))(g · y) = ψ(x)(g−1g · y) = ψ(x)(y),

since for any function F ∈ L2(Y, ν) we have by definition that g·F (z) = F (g−1z)

any z ∈ Y .

Schmidt and Walters have obtained a purely combinatorial characterization

of mild mixing:

Theorem 2.4 ([28]): Let G act in a measurable, non-singular, properly ergodic

manner on (X,µ). The action is mild mixing if and only if for all A measurable

and neither null nor conull

liminfg→∞µ(A∆(g ·A)) > 0.

It would be interesting if there is a similar combinatorial characterization of

when a properly ergodic non-singular action preserves ergodicity with respect to

products with measure preserving, ergodic actions on standard Borel probability

spaces.

We work toward a general result, due to Kaimanovich, and after Burger and

Monod. In this section we see that any locally compact group has an M-

ergodic action, for M the class of separable Banach spaces. In the next section

we review the amenability properties of this action.

Definition: Let µ be a probability measure on a lcsc group G that has the same

measure class as a left invariant Haar measure. Consider the one sided product,

∏
n∈N

(G,µ),
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equipped with the measure λ arising from the infinite product of µ. We equip

this space with the shift action

T :
∏
n∈N

G→
∏
n∈N

G

(g1, g2, g3, . . .) 7→ (g2, g3, g4, . . .).

Lemma 2.5 (Kaimanovich; [15]): If E is a separable Banach space and

F :
∏
N

G→ E

π : G→ Iso(E)

are measurable with

πg1
F ((g2, g3, . . .)) = F ((g1, g2, . . .)),

then F is constant almost everywhere.

Note that we do not yet assume π is a homomorphism, though actually it

will be in the cases of interest to us. The measurability assumption on F is

that pullbacks of sets in E which are open in the Banach space metric are λ

measurable.

We need to define another semigroup action along with another action of the

group G.

Definition: Let

S :
∏
n∈N

G→
∏
n∈N

G

(g1, g2, g3, . . .) 7→ (g1g2, g3, g4, . . .).

Note that the assumptions on µ guarantee that this semigroup action is non-

singular with respect to the product measure λ.

We then let G act on
∏

N
G by

γ · (g1, g2, g3, . . .) = (γg1, g2, g3, . . .).

This G action clearly commutes with S and is again non-singular by choice of

µ.
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Definition: Let Γ(G,µ) be the space of ergodic components of S; that is to say,

we write
∏

N
G as a measurable union of disjoint pieces,

∏
N

G =
⋃̇

x∈Γ(G,µ)

Yx,

where each Yx is S-invariant and S acts ergodically on Yx. (See [12]). We then

let

b :
∏

G ։ Γ(G,µ)

be the natural surjection, with b(~g) = x if ~g ∈ Yx. We let ν = b∗[λ] be the push

forward of λ, defined by ν[A] = λ[b−1[A]].

Since the action of G commutes with S we obtain a well-defined action of G

on Γ(G,µ) with

γ · b(~g) = b(γ · ~g).

Again, this action is non-singular, since the pre-existing action on (
∏

N G, λ) is

non-singular.

Therefore we have a daunting total of four non-singular actions: The semi-

group action provided by T ; the semigroup action provided by S; the action

on the original
∏

N
G by G; the induced action of G on the quotient object

Γ(G,µ). Ultimately we will only be interested in this final action of G, but it is

the remarkable discovery of [15] that the other three actions cooperate to prove:

Theorem 2.6 (Kaimanovich, [15]): Let M be the class of separable Banach

spaces. Then the action of G on Γ(G,µ) is M-ergodic.

Proof. (In any reasonable mathematical sense, this proof has been previously

given in [15]; however since our set up and notation is rather different, we recall it

here for the reader’s convenience.) Fix E ∈ M and π : G→ Iso(E) a continuous

homomorphism. Let f : Γ(G,µ) → E be G-equivariant and measurable in the

usual sense. We then define F = f ◦ b

F :
∏
N

G→ E,

~g 7→ f(b(~g)).

F is clearly measurable; on the other hand we obtain almost everywhere that

πg1
F ((g2, g3, . . .)) = πg1

(f(b((g2, g3, . . .))) = f(g1 · b((g2, g3, . . .))),
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by the G-equivariance of f ,

= f(b(g1 · (g2, g3, . . .))),

by definition of the G-action on Γ(G,µ),

= f(b(g1g2, g3, . . .)) = f(b(g1, g2, g3, . . .)) = F ((g1, g2, g3, . . .)),

by invariance of b under S; hence by 2.5 f is constant almost everywhere.

By suitably composing any ~g ∈
∏

N
G we can view such a sequence as pro-

viding a random walk through G. The shift action S then corresponds to

discounting the choice of the first element in this walk. The space of ergodic

components Γ(G,µ) is something like the space of random walks considered up

to “direction” or “eventual behavior”. We have failed to emphasize this point

of view above; it comes through much more strongly in the original treatment

of [15].

Kaimanovich’s paper also proves a better result: The G-action on Γ(G,µ)

is doubly ergodic. That is to say, any measurable, G-equivariant function

f : Γ(G,µ) × Γ(G,µ) → E is constant almost everywhere. The proof of this

stronger result, for which we have no need, is similar and follows from a strength-

ening of 2.5.

3. Amenability

Definition: (See [31]; but note that, unlike Zimmer, we write our actions on the

left.) Let G be a lcsc group acting measurably on (X,µ) and let H be a Polish

group. A measurable function

α : X ×G→ H

is a cocycle if for almost every x ∈ X and all g, h ∈ G

α(x, gh) = α(hx, g)α(x, h).

In the case that H = Iso(E), the isometry group of some separable Banach

space, we obtain the dual cocycle

α∗ : X ×G→ Iso(E∗)

by taking the adjoint in the usual way.
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Definition: We say that the action of G on (X,µ) is amenable if whenever we

have such a cocycle and a measurable assignment

x 7→ Ax,

X → Kc(E
∗
1 ),

assigning to each point a weak∗ compact, convex subset of the unit ball E∗ with

the invariance property

α∗(x, g)Ax = Agx

for almost every x, all g, then we can find a measurable assignment

X → E∗

x 7→ ax,

with each ax ∈ Ax and α∗(x, g)ax = ag·x for almost every x, all g.

We are thinking of E as having the weak∗ topology, and so in particular mea-

surability of the assignment x 7→ Ax is the requirement that it be measurable

with respect to the induced Effros Borel structure: That is to say, if U ⊂ E∗ is

weak∗ open, then the set of x with Ax ∩ U 6= ∅ must be µ-measurable.

There is also a parallel definition we can give for amenability of equivalence

relations. We do not give this definition here, but simply quote an alternative

characterization from [7].

Theorem 3.1 (Connes-Feldman-Weiss; [7]): An equivalence relation E on a

standard Borel probabibility space is amenable if and only if there is a conull

subset A with E|A ≤B E0.

Lemma 3.2 (Zimmer; [31]): If S is an amenable G-space and X is any standard

Borel probability space on which G acts measurably and non-singularly, then

X × S is an amenable G-space in the usual diagonal action.

Theorem 3.3 (Zimmer; [30]): If G is lcsc, then Γ(G,µ), as defined in §2, is an

amenable G-space.

Putting together Lemma 3.2 and Theorem 3.3 along with Theorem 2.6 we

get:

Corollary 3.4: An lcsc group G admits a non-singular, measurable action

on a standard Borel probability space (S,m) such that for any other standard
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Borel probability space (X, ν) on which G acts measurably and in a measure

preserving, properly ergodic fashion, we have:

(i) the diagonal action of G on (S ×X,m× ν) is properly ergodic;

(ii) the diagonal action of G on (S ×X,m× ν) is amenable.

Without placing additional restrictions on G, this corollary would seem to be

the strongest we can hope for in this direction. In particular, we cannot have a

mildly mixing action of F2 which is amenable.

Proposition 3.5 (Folklore): Let the free group F2 on two generators act

amenably on a standard Borel probability space (S,m) by non-singular trans-

formations. Then the action of F2 on (S3,m3) is not properly ergodic.

Proof. Note that F2 acts continuously on its boundary, ∂F2, and hence we have

an induced homomorphism ρ : F2 → IsoC(∂F2), from F2 to the isometry group

of the continuous functions on the boundary. We then obtain an induced cocycle

S × F2 → Iso(C(∂F2))

(s, σ) 7→ ρ(σ).

The action is amenable, and hence forM(∂F2) the space of probability measures

on ∂F2 (and the dual of C(∂F2)) we obtain a measurable equivariant assignment

S →M(∂F2),

s 7→ νs.

At the level of S3 we obtain a corresponding equivariant

S3 →M(∂F2),

(s1, s2, s3) 7→
1

3
(νs1

+ νs2
+ νs3

).

On an invariant non-null set, A ⊂ S3, the resulting measure νs1
+νs2

+νs3
does

not concentrate on just two points. Following, e.g., [13, §C4] (or see [2] and [4]

for the primary references) we may find a measurable equivariant map from the

measures on M(∂F2) concentrating on more than two points, and hence there

is a measurable equivariant map

ϕ : A→ F2.

This gives us a selector A0 ⊂ A defined by

A0 = {(s1, s2, s3) ∈ A : ϕ(s1, s2, s3) = e},



Vol. 163, 2008 NON-TREEABILITY FOR PRODUCT GROUP ACTIONS 399

where e is the identity in F2; the existence of such a selector contradicts proper

ergodicity of F2 on A and hence on S3.

There is one last fact in this direction we need.

Lemma 3.6: If lcsc G acts on standard Borel probability space (X,µ) by mea-

sure preserving transformations with every point having an amenable stabilizer,

then if EX
G ≤B E0, the group G is amenable.

Proof. From [14, 2.15] we have that the equivalence relation is amenable; and

then it is known from [3] that an action with amenable stabilizers and amenable

equivalence relation is amenable, and thus G is amenable by [31, 4.3.3].

4. The result

Theorem 4.1: Let G1, G2 be lcsc groups acting on a standard Borel probability

space (X,µ) with:

(0) the actions of G1 and G2 commute;

(i) the action of G1 ×G2 is measurable (as a function from G1 ×G2 ×X to

X);

(ii) the action of G1 ×G2 is measure preserving;

(iii) the orbit equivalence relation EG1
is not amenable;

(iv) the action of G2 is properly ergodic on all its ergodic components.

Then the resulting orbit equivalence relation EX
G1×G2

is non-treeable.

Proof. By going to ergodic components we may actually assume that the action

of G1 × G2 is ergodic. Assume towards a contradiction that the equivalence

relation is treeable, and then appealing to Corollary 1.2 we obtain that some

Borel θ : X → F (2F2) witnessing EX
G1×G2

Borel reducible to the free Borel

action of F2 on the standard Borel probability space F (2F2). In particular, we

obtain a corresponding cocycle

α : X ×G1 ×G2 → F2.

Following the ergodic decomposition theorem of [12], we write

X =
⋃̇
z∈Z

Xz
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as a decomposition ofX into G2-invariant ergodic pieces3; applying the measure

disintegration theorem (see for instance [16]) we obtain a measure µ̂ on Z along

with G2-invariant measures (µz)z∈Z such that µ =
∫

Z
µzµ̂(z). The assumptions

of the theorem imply that the action of G2 on each Xz is properly ergodic. This

is a critical observation for the proof — if G2 were to act essentially transitively

on its ergodic components, then it would make no real contribution to the

complexity of the structure of the equivalence relation, the argument in the

first claim below would fail, and in fact the theorem without this assumption

would admit a counterexample.

Now appealing to 3.4 we let (S,m) be a standard Borel probability space on

which G2 acts ergodically with the diagonal action on X×S amenable and such

that at each fiber Xz we have the induced action of G2 on Xz ×S still properly

ergodic. Let

α̂ : (X × S) ×G2 → F2

be derived from α in the obvious way:

α̂(x, s, g) = α(x, eG1
, g),

where eG1
is the identity in G1. By the amenability of the action of G2 on

X × S we may find a measurable assignment of probability measures

X × S →M(∂F2)

(x, s) 7→ νx,s

such that α̂(x, s, g) ·νx,s = νg·x,g·s for almost every x ∈ X, s ∈ S and all g ∈ G2.

We let M≤2(∂F2) be the probability measures concentrating on at most two

points; we let M≥3(∂F2) = M(∂F2)\M≤2(∂F2) be the measures whose support

is greater than two points.

The next argument through the next couple of claim parallels [1] and is similar

to ideas of Zimmer, and from there Margulis and eventually Mostow.

Claim: For almost every x, s, νx,s ∈M≤2(∂F2).

Proof of Claim. Otherwise we can obtain some ergodic componentXz such that

for almost every x ∈ Xz and for almost every s ∈ S we have νx,s ∈M≥3(∂F2).

3 Here Z is the standard Borel space arising as equivalence classes of the smooth equivalence

relation x1Ex2 if and only if ∀B ∈ B0(for almost every g ∈ G(g · x1 ∈ B) ⇔ for almost

every g ∈ G(g · x2 ∈ B)), for some countable Boolean algebra B0 which generates the

Borel sets on X.
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Appealing to the existence of an equivariant Borel map fromM≥3(∂F2) to F2, as

given discussed in the course of Proposition 3.5 (again see, for instance, Theorem

C4 of [13], or [2], [4]) we may find a measurable α̂-equivariant ϕ : Xz ×S → F2.

This will provide a contradiction to proper ergodicity of the action. We let

(σi)i∈N enumerate F2 and at each (x, s) ∈ Xz ×S we let i(x, s) be the least i for

which there exists a non-null collection of g ∈ G2 with ϕ(g · x, g · s) = σi; since

the measure quantifier preserves Borel sets (see for instance [16]), this function

is Borel, and moreover the set

A1 = {(x, s) : ϕ(x, s) = σi(x,s)}

will provide a Borel selector for EXz×S
G2

; since α̂(x, s, g) · θ(x) = θ(g · x) by the

definition of the cocycle, we have

θ(x1) = θ(x2)

for all (x1, s1), (x2, s2) ∈ A1 with (x1, s1)E
Xz×S
G2

(x2, s2); then using say Jankov,

von Neumann uniformization (see for instance [16]) we obtain a measurable

function f : Xz × S → F (2F2) assigning to each (x, s) the unique value θ(x′)

any (x′, s′) ∈ A1 that is EG2
equivalent to (x, s). Our action is ergodic, and f is

G2-invariant, so f is constant almost everywhere. But that means in particular

that the equivalence class [θ(x)]F2
is constant almost everywhere, and hence, by

assumption on θ, the equivalence class [x]G2
is constant almost everywhere on

Xz. This contradicts the proper ergodicity of the action of G2 on Xz ×S.

By a straightforward exhaustion argument (compare [1], [18], or even [13,

Lemma 6.6]) we may find a measurable, equivariant assignment

X × S →M(∂F2)

(x, s) 7→ νx,s

which is maximal almost everywhere. In other words, if

(x, s) 7→ ν′x,s

is any other measurable, equivariant assignment with

supp(νx,s) ⊂ supp(ν′x,s)

(where here supp(µ) denotes the support of measure µ) and α̂(x, s, g) · ν′x,s =

ν′g·x,g·s for almost every x and g, then

ν′x,s = νx,s
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almost everywhere. Since νx,s ∈M≤2(∂F2) almost everywhere, we may further

more assume that these measures assign all points in their support equal mass

— which is to say, almost every νx,s equals either δa or 1
2 (δa1

+ δa2
).

Claim: For g ∈ G1, the assignment

(x, s) 7→ α(g · x, g, eG2
)−1 · νg·x,s

is again α̂-equivariant.

Proof of Claim. Since for any h ∈ G2 we have

α̂(x, s, h) · (α(g · x, g, eG2
)−1 · νg·x,s) = α(x, h, eG1

) · (α(g · x, g, eG2
)−1 · νg·x,s),

which by the defining identity of the cocycle and the fact that the actions of G1

and G2 commute equals

α(hg · x, g, eG2
)−1 · (α(g · x, h, eG1

) · νg·x,s) = α(hg · x, g, eG2
)−1 · νhg·x,h·s,

by G2-equivariance of the cocycle, which in turn by the commutativity of the

G1, G2 actions equals

= α(gh · x, g, eG2
)−1 · νgh·x,h·s,

as required.

Thus by maximality of the assignment

(x, s) 7→ νx,s

we have

α(g · x, g, eG2
)−1 · νg·x,s = νx,s

almost everywhere, and hence that (x, s) 7→ νx,s must be equivariant under

the entire action of G1 × G2. In particular, we obtain that for almost every

(x, s) ∈ X×S and almost every g ∈ G1 we have some α(x, g, eG2
) ·νx,s = νg·x,s.

Using Fubini we may find some specific s0 ∈ S such that for almost every

g ∈ G1, x ∈ X

α(x, g, eG2
) · νx,s0

= νg·x,s0

∴ νg·x,s0
E

M(∂F2)
F2

νx,s0
.
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Since the equivalence relation on M(∂F2) induced by the action of F2 is hyper-

finite (see, for instance, the appendix of [13]), we may write

E
M(∂F2)
F2

=
⋃
n∈N

Fn,

where (Fn)n∈N is an increasing union of Borel equivalence relation with finite

classes.

Following [17] we can fix a Borel C ⊂ X meeting each EX
G1

equivalence class

in a countable non-empty set and a Borel function

f : X → C

with xEX
G1
f(x) all x ∈ X . In particular, this gives EX

G1
≤B EX

G1
|C . We then

use f to transfer the measure µ to a measure µ̂ on C with

µ̂(A) = µ(f−1[A]).

Note that EX
G1

|C will be non-amenable with respect to µ̂ since EX
G1

is non-

amenable with respect to µ.

We then set

x1F̂nx2

if x1E
X
G1
x2 and νx1,s0

Fnνx2,s0
. Since x1E

X
G1
x2 implies νx1,s0

E
M(∂F2)
F2

νx2,s0
we

have ⋃
n

F̂n = EX
G1
.

Now there are two cases, both leading to the conclusion that EX
G1

is Borel

reducible to E0 on a co-null set, and hence a contradiction to its non-amenability

by Lemma 3.6.

Case (1): There is an n and a µ̂ non-null set on which F̂n is non-smooth.

Claim: There is a µ̂ non-null set of x ∈ C for which

θ[[x]
F̂n

],

the pointwise image of the set [x]
F̂n

under θ, is infinite.

Proof of Claim. Otherwise, apply Lusin–Novikov (as say found in [16]) to ob-

tain a Borel function

ρ : θ[C] → C
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such that for every y we have

θ(ρ(y)) = y.

Then ρ ◦ θ[C] meets each F̂n equivalence class in a finite non-empty set. Then

since Borel equivalence relations with finite classes are smooth and since F̂n is

Borel reducible to F̂n|ρ◦θ[C] we obtain that F̂n is smooth, with a contradiction

to case assumption.

Claim: There is a µ̂ non-null set of x’s for which the corresponding measure

νx,s0
has infinite stabilizer.

Proof of claim. Suppose first that νx,s0
has finite stabilizer. Then for any other

ν with νEF2
νx,s0

there are only finitely many σ ∈ F2 with σ · νx,s0
= ν. Thus

since each Fn is finite we obtain {σ ∈ F2 : σ · νx,s0
Fnνx,s0

} finite, and hence

θ[[x]
F̂n

] is finite.

In conclusion we have thus obtained that x is outside the µ̂ positive set of

the last claim.

As noted for instance in the appendix of [13], there are only countably many

measures in M≤2(∂F2) with infinite stabilizer, and hence by ergodicity we may

assume there is some fixed ν such that almost everywhere

νx,s0
E

M≤2(∂F2)
F2

ν.

Then we may find a measurable assignment

X → F2

x 7→ σx

such that σx · νx,s0
= ν almost everywhere. Thus if we replace the reduction θ

by

θ̂ : X → F (2F2),

x 7→ σx · θ(x)

then we obtain a reduction of EX
G1

almost everywhere into an orbit equiva-

lence relation the induced by the stabilizer of ν, which will necessarily be cyclic

abelian, and hence hyperfinite by [14], with a contradiction to non-amenability

of G1 by Lemma 3.6.

Case (2): At every n there is a conull set on which F̂n is smooth.
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Hence EX
G1

is, on a conull set, hypersmooth — that is to say, the increas-

ing union of smooth equivalence relations. Hence by the Kechris–Louveau di-

chotomy theorem of [19] we have that it is either ≥B E1 or ≤B E0. The

former is impossible, since [19] shows that E1 is not Borel reducible to any

Polish group action, whilst the latter gets us into the same contradiction to the

non-amenability of EG1
.

5. Spanning trees for product groups

Definition: For X a set, T ⊂ X × X is said to be a spanning tree if it is

symmetric, irreflexive, acyclic, and, moreover, any two distinct points in X are

connected by some path in T .

We will only be interested in the case that X is countable. In this event,

the collection of such spanning trees is a Borel subset of {0, 1}X×X via the

identification of a subset of X ×X with its characteristic function. The group

of all permutations of X acts on the standard Borel space of spanning trees by

g · T = {(g · x1, g · x2) : (x1, x2) ∈ T }.

The following is a continuous analog of a lemma presented in the discrete

case with credit to Russ Lyons by the manuscript [20].

Lemma 5.1: Let Ω be a countable set, let Sym(Ω) be the group of all permu-

tations of Ω, and let G < Sym(Ω) be a subgroup. Suppose:

(a) G is closed in the topology of pointwise convergence;

(b) for any a ∈ Ω the subgroup Ga(=df {g ∈ G : g · a = a}) is compact;

(c) there is a G-invariant Borel probability measure on the spanning trees on

Ω.

Then there is an action of G on some standard Borel probability space Y with:

(i) the action measurable (as a function from G× Y to Y );

(ii) the action measure preserving;

(iii) for any y ∈ Y the stabilizer of y in G, Gy , is compact;

(iv) the equivalence relation EY
G is treeable.

Proof. Let Ω0 ⊂ Ω be an orbit under G. I claim that we can replace Ω by Ω0

by obtaining an invariant probability measure on the spanning trees on Ω0. To

do this, we only need to find a Borel and invariant assignment of a spanning

tree on Ω0 to spanning trees on Ω, and this follows by the kind of argument
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one sees in [14]: Given a spanning tree T on Ω, we assign to each y ∈ Ω the

point pT (y) arising as the place of first entrance into Ω0 under a T -path from

y to Ω0; we can do this so if the path from y to pT (y) passes through y′ then

pT (y) = pT (y′); we then define T̂ on Ω0 by x1T̂ x2 if and only if x1 6= x2 and

there are y1, y2 with pT (y1) = x1, pT (y2) = x2, and y1Ty2.

Thus from now on we assume that the action of G acts transitively on Ω and

we fix some specific a ∈ Ω and let Ga be its stabilizer in G. We use T (Ω) to

denote the space of spanning trees on Ω. We let µ be the G-invariant measure

T (Ω).

Following [29] we let (X, ν) be a standard Borel probability space on which

G acts freely. We only need to show that the orbit equivalence relation arising

from the action of G on y = T (Ω) ×X is treeable.

Consider then the equivalence relation EGa
on T (Ω) × X arising from the

group Ga. The responsible group is compact and hence the equivalence relation

is smooth, and thus we may find a Borel selector A ⊂ T (Ω) ×X meeting each

EGa
-equivalence class in exactly one point.

We need only define the treeing on A. For (T1, x1), (T2, x2) ∈ A set

(T1, x2)G(T2, x2) if and only if there is g ∈ G with

g · T1 = T2,

g · x1 = x2,

(a, g(a)) ∈ T2, or, equivalently, (a, g−1(a)) ∈ T1.

This is a Borel graphing, since the set of g will be of size at most 1, and we

can appeal to the uniformization theorem for Borel sets in the plane with small

sections. To check it is a treeing we need to show existence of unique paths

between ((T, x), (T ′, x′)) ∈ EY
G ∩A×A.

We will construct a path and then go on to verify that any other G-path must

arise by the same process and in fact be the same.

We choose the unique h ∈ G with h · x = x′; the assumption of EG equiv-

alence entails h · T = T ′. We then form a non-self intersecting path a0 =

a, a1, a2, . . . , an = h(a) from a to h(a) inside the tree T . We consider the set of

all g1 with g−1
1 (a0) = a1; this exactly determines g1 up to a left coset of Ga, so

we can choose some such g1 with g1 · (T, x) = (T1, x1) ∈ A, and observe that

g1 witnesses (T, x)G(T1, x1). Applying the same recipe we may choose some g2
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with g−1
2 (a0) = g1(a2) and (T2, x2) = g2 · (T1, x1) ∈ A; since g−1

1 (a0) = a1

g1(a1) = a0,

and from and (a1, a2) ∈ T we obtain

(g1(a1), g1(a2)) ∈ T1 = g1 · T

∴ (a0, g1(a2)) = (a0, g
−1
2 (a0)) ∈ T1

∴ (T1, x1)G(T2, x2).

We continue successively, obtaining at each i < n the pair (Ti, xi) along with

g1, g2, . . . gi−1

(Ti, xi) = gigi−2 · · · g1 · (T, x),

gigi−2 · · · g1(ai) = a0,

and hence

(a0, gigi−1 · · · g1(ai+1)) = (gigi−1 · · · g1(ai), gigi−1 . . . g1(ai+1))

∈ gi−1gi−2 · · · g1 · T = Ti.

We then choose gi+1 subject to the requirement that

g−1
i+1(a0) = gigi−1 · · · g1(ai+1)

and (Ti+1, xi+1) =df gi+1 · (Ti, xi) ∈ A. This keeps the happy game playing for

another round, since gi+1gi · · · g1(ai+1) = a0 and (Ti+1, xi+1)G(Ti, xi). Even-

tually we end up with g = gngn−1 · · · g1 with the properties that g · (T, x) =

(Tn, xn) ∈ A and g−1 · a0 = an, which in particular entails Gag = Gah; then

the assumption that A selects exactly one point from each coset will entail

(Tn, xn) = (T ′, x′) as required.

Alternatively, given any other G path,

(S0, y0) = (T, x), (S1, y1), . . . , (Sm, ym) = (T ′, x′)

we reverse the engineering above and find h1, h2, . . . , hm with each hi ·yi−1 = yi

and then let bi = h−1
1 h−1

2 · · ·h−1
i (a0). The assumption of G-adjacency implies

each

(h−1
i+1(a0), a0) ∈ Si = hihi−1 · · ·h1 · T

∴ (h−1
1 h−1

2 · · ·h−1
i h−1

i+1(a0), h
−1
1 h−1

2 · · ·h−1
i (a0) ∈ T )

∴ (bi+1, bi) ∈ T.
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Note, however, that we must also end up with hmhm−1 · · ·h1 = h, and hence

bm = an, and in particular a, b1, b2, . . . , bm = an traces out a path in T from a

to an. It then follows from T being a tree and the assumptions on our set A

that either that either m = n and each ai = bi or there is a repeated vertex –

(Si, yi) = (Sj , yj) some i 6= j ≤ n – along the way.

This lemma granted, Theorem 0.4 follows from Theorem 4.1. In the situ-

ation they describe we have a product of lcsc automorphism groups, the first

of which is assumed to be non-amenable and the second of which is implicitly

assumed to be non-compact. Their free action on any probability space must

be non-treeable by Theorem 4.1, and hence by the lemma above there can be no

invariant probability measure on the spanning trees of X × Y in the statement

of Theorem 0.4.
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